Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Neuron ; 112(7): 1081-1099.e7, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290516

RESUMEN

Oxytocin (OXT) plays important roles in autonomic control and behavioral modulation. However, it is unknown how the projection patterns of OXT neurons align with underlying physiological functions. Here, we present the reconstructed single-neuron, whole-brain projectomes of 264 OXT neurons of the mouse paraventricular hypothalamic nucleus (PVH) at submicron resolution. These neurons hierarchically clustered into two groups, with distinct morphological and transcriptional characteristics and mutually exclusive projection patterns. Cluster 1 (177 neurons) axons terminated exclusively in the median eminence (ME) and have few collaterals terminating within hypothalamic regions. By contrast, cluster 2 (87 neurons) sent wide-spread axons to multiple brain regions, but excluding ME. Dendritic arbors of OXT neurons also extended outside of the PVH, suggesting capability to sense signals and modulate target regions. These single-neuron resolution observations reveal distinct OXT subpopulations, provide comprehensive analysis of their morphology, and lay the structural foundation for better understanding the functional heterogeneity of OXT neurons.


Asunto(s)
Oxitocina , Núcleo Hipotalámico Paraventricular , Animales , Ratones , Hipotálamo , Neuronas/fisiología , Oxitocina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología
2.
Hormones (Athens) ; 23(1): 15-23, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37979096

RESUMEN

BACKGROUND: The neuropeptide oxytocin (OT) is crucial in several conditions, such as lactation, parturition, mother-infant interaction, and psychosocial function. Moreover, OT may be involved in the regulation of eating behaviors. METHODS: This review briefly summarizes data concerning the role of OT in eating behaviors. Appropriate keywords and medical subject headings were identified and searched for in PubMed/MEDLINE. References of original articles and reviews were screened, examined, and selected. RESULTS: Hypothalamic OT-secreting neurons project to different cerebral areas controlling eating behaviors, such as the amygdala, area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus nerve. Intracerebral/ventricular OT administration decreases food intake and body weight in wild and genetically obese rats. OT may alter food intake and the quality of meals, especially carbohydrates and sweets, in humans. DISCUSSION: OT may play a role in the pathophysiology of eating disorders with potential therapeutic perspectives. In obese patients and those with certain eating disorders, such as bulimia nervosa or binge/compulsive eating, OT may reduce appetite and caloric consumption. Conversely, OT administered to patients with anorexia nervosa may paradoxically stimulate appetite, possibly by lowering anxiety which usually complicates the management of these patients. Nevertheless, OT administration (e.g., intranasal route) is not always associated with clinical benefit, probably because intranasally administered OT fails to achieve therapeutic intracerebral levels of the hormone. CONCLUSION: OT administration could play a therapeutic role in managing eating disorders and disordered eating. However, specific studies are needed to clarify this issue with regard to dose-finding and route and administration time.


Asunto(s)
Anorexia Nerviosa , Oxitocina , Humanos , Femenino , Ratas , Animales , Oxitocina/fisiología , Conducta Alimentaria/fisiología , Hipotálamo , Obesidad
3.
Sci Rep ; 13(1): 4835, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964221

RESUMEN

Studies in prairie voles (Microtus ochrogaster) have shown that although formation of the pair bond is accompanied by a suite of behavioral changes, a bond between two voles can dissolve and individuals can form new pair bonds with other conspecifics. However, the neural mechanisms underlying this behavioral flexibility have not been well-studied. Here we examine plasticity of nonapeptide, vasopressin (VP) and oxytocin (OT), neuronal populations in relation to bonding and the dissolution of bonds. Using adult male and female prairie voles, animals were either pair bonded, co-housed with a same-sex sibling, separated from their pair bond partner, or separated from their sibling. We examined neural densities of VP and OT cell groups and observed plasticity in the nonapeptide populations of the paraventricular nucleus of the hypothalamus (PVN). Voles that were pair bonded had fewer PVN OT neurons, suggesting that PVN OT neural densities decrease with pair bonding, but increase and return to a pre-pair bonded baseline after the dissolution of a pair bond. Our findings suggest that the PVN nonapeptide cell groups are particularly plastic in adulthood, providing a mechanism by which voles can exhibit context-appropriate behavior related to bond status.


Asunto(s)
Oxitocina , Apareamiento , Animales , Masculino , Femenino , Oxitocina/fisiología , Hipotálamo , Núcleo Hipotalámico Paraventricular , Arvicolinae/fisiología , Receptores de Oxitocina
4.
Neuron ; 110(12): 1889-1890, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35709694

RESUMEN

What are the cellular-level structural and functional changes underlying newly adaptive behaviors in the mammalian brain? In this issue of Neuron, Inada et al. (2022) identify the brain-wide connectivity and synaptic plasticity changes of hypothalamic oxytocin+ neurons in male mice contributing to their parental behaviors.


Asunto(s)
Plasticidad Neuronal , Neuronas , Animales , Encéfalo/fisiología , Hipotálamo , Masculino , Mamíferos , Ratones , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Oxitocina/fisiología
5.
Curr Aging Sci ; 15(3): 218-228, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35431008

RESUMEN

Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.


Asunto(s)
Hipotálamo , Oxitocina , Animales , Encéfalo , Hipotálamo/fisiología , Neuronas , Oxitocina/farmacología , Oxitocina/fisiología
6.
Front Endocrinol (Lausanne) ; 13: 786271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242106

RESUMEN

Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Femenino , Humanos , Hipotálamo , Recién Nacido , Lactancia , Masculino , Oxitocina/fisiología , Embarazo , Salud de la Mujer
7.
J Neurosci ; 42(14): 2885-2904, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35197315

RESUMEN

Oxytocin (OXT) neurons in paraventricular nucleus of hypothalamus (PVN) are involved in modulating multiple functions, including social, maternal, feeding, and emotional related behaviors. PVN OXT neurons are canonically classified into magnocellular (Magno) and parvocellular (Parvo) subtypes. However, morpho-electric properties and the diversity of PVN OXT neurons are not well investigated. In this study, we profiled the morpho-electric properties of PVN OXT neurons by combining transgenic mice, electrophysiological recording, morphologic reconstruction, and unsupervised clustering analyses. Total 224 PVN OXT neurons from 23 mice were recorded and used for analyses in this study, and 29 morpho-electric parameters were measured. Magno and Parvo OXT neurons have prominent differences in their morpho-electric features, and PVN OXT neurons in male and female mice share similar neuronal properties. Some morpho-electric features of PVN OXT neurons, especially Magno neurons, exhibit significant diverse changes along the rostral-caudal axis. Furthermore, we find that PVN OXT neurons are classified into at least six subtypes based on their morpho-electric properties via unsupervised clustering. Only one Magno-Parvo mixed subtype in posterior PVN subregion, but not the other five subtypes, showed significant neuronal activity change in different feeding conditions. Our study supports the diversity of PVN OXT neurons and subtle neuron classification will promote excavating the functions of oxytocinergic system.SIGNIFICANCE STATEMENT Oxytocin (OXT) is well known for its function in labor induction, but it also plays multiple roles in social, feeding, and emotional behaviors via modulating different brain regions. Paraventricular nucleus of hypothalamus (PVN) OXT neurons are traditionally classified into magnocellular and parvocellular. However, functional and single-cell transcriptomic studies indicate that OXT neurons should be further classified. Here, we thoroughly investigated the morpho-electric properties and spatial distribution of PVN OXT neurons, and find that OXT neurons have at least six subtypes based on their morpho-electric features. Among these six subtypes, only one magnocellular-parvocellular mixed subtype, which are distributed in the posterior PVN subregion, change their activities with different feeding states. Our study uncovers the diversity of PVN OXT neurons and suggests the necessary of subtle neuronal classification.


Asunto(s)
Neuronas , Oxitocina , Núcleo Hipotalámico Paraventricular , Animales , Femenino , Hipotálamo , Masculino , Ratones , Neuronas/fisiología , Oxitocina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas , Ratas Wistar
8.
Cells ; 11(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203274

RESUMEN

Obesity disease results from a dysfunctional modulation of the energy balance whose master regulator is the central nervous system. The neural circuitries involved in such function complete their maturation during early postnatal periods, when the brain is highly plastic and profoundly influenced by the environment. This phenomenon is considered as an evolutionary strategy, whereby metabolic functions are adjusted to environmental cues, such as food availability and maternal care. In this timeframe, adverse stimuli may program the body metabolism to maximize energy storage abilities to cope with hostile conditions. Consistently, the prevalence of obesity is higher among individuals who experienced early life stress (ELS). Oxytocin, a hypothalamic neurohormone, regulates the energy balance and modulates social, emotional, and eating behaviors, exerting both central and peripheral actions. Oxytocin closely cooperates with leptin in regulating energy homeostasis. Both oxytocin and leptin impact the neurodevelopment during critical periods and are affected by ELS and obesity. In this review article, we report evidence from the literature describing the effect of postnatal ELS (specifically, disorganized/inconstant maternal care) on the vulnerability to obesity with a focus on the role of oxytocin. We emphasize the existing research gaps and highlight promising directions worthy of exploration. Based on the available data, alterations in the oxytocin system may in part mediate the ELS-induced susceptibility to obesity.


Asunto(s)
Experiencias Adversas de la Infancia , Obesidad , Oxitocina , Ingestión de Alimentos , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Oxitocina/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-35086464

RESUMEN

BACKGROUND: In the first section of this review, we examined the neuroanatomical and neurochemical data on hunger and satiety centers, glucose receptors, sensorial influences on eating behavior, and regulation of energy requirements. The second section is devoted to orexigenic and anorexigenic hormones. OBJECTIVE: This paper aimed to overview and summarize data regarding the role of neuroendocrine regulation of food intake and eating behavior. METHODS: Appropriate keywords and MeSH terms were identified and searched in MEDLINE/ PubMed. References of original articles and reviews were examined. RESULTS: Hunger and satiety center are located in the lateral (LH) and ventromedial hypothalamus (VMH). Lasting aphagia has been observed following a lesion of LH, while hyperphagia is induced by LH stimulation. On the other hand, increased food intake after VMH lesion and aphagia following VMH stimulation in hungry animals has also been reported. Intracellular glucopenia triggers food intake by reducing neuronal activity at the satiety center level. Moreover, sensory influences are regulated by food palatability as the positive hedonic evaluation of food and energy requirement indicates the average amount of food energy needed to balance energy expenditure. Orexigenic and anorexigenic hormones secreted from the gastrointestinal tract and adipose tissue regulate brain areas involved in eating behavior via gastric afferent vagal nerve, circumventricular organ area postrema, or transporter system. Finally, oxytocin (OT) plays a role in reward-related eating by inhibiting sugar intake and decreasing palatable food intake by suppressing the reward circuitry in the brain. Moreover, the anorectic effect of nesfatin-1 is abolished by an OT antagonist.


Asunto(s)
Conducta Alimentaria , Hipotálamo , Animales , Sistemas Neurosecretores , Oxitocina/fisiología , Ingestión de Alimentos/fisiología
10.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528509

RESUMEN

Emerging evidence suggests that the nervous system is involved in tumor development in the periphery, however, the role of the central nervous system remains largely unknown. Here, by combining genetic, chemogenetic, pharmacological, and electrophysiological approaches, we show that hypothalamic oxytocin (Oxt)-producing neurons modulate colitis-associated cancer (CAC) progression in mice. Depletion or activation of Oxt neurons could augment or suppress CAC progression. Importantly, brain treatment with celastrol, a pentacyclic triterpenoid, excites Oxt neurons and inhibits CAC progression, and this anti-tumor effect was significantly attenuated in Oxt neuron-lesioned mice. Furthermore, brain treatment with celastrol suppresses sympathetic neuronal activity in the celiac-superior mesenteric ganglion (CG-SMG), and activation of ß2 adrenergic receptor abolishes the anti-tumor effect of Oxt neuron activation or centrally administered celastrol. Taken together, these findings demonstrate that hypothalamic Oxt neurons regulate CAC progression by modulating the neuronal activity in the CG-SMG. Stimulation of Oxt neurons using chemicals, for example, celastrol, might be a novel strategy for colorectal cancer treatment.


Colorectal (or 'bowel') cancer killed nearly a million people in 2018 alone: it is, in fact, the second leading cause of cancer death globally. Lifestyle factors and inflammatory bowel conditions such as chronic colitis can heighten the risk of developing the disease. However, research has also linked to the development of colorectal tumours to stress, anxiety and depression. This 'brain-gut' connection is particularly less-well understood. One brain region of interest is the hypothalamus, an almond-sized area which helps to regulate mood and bodily processes using chemical messengers that act on various cells in the body. For instance, Oxt neurons in the hypothalamus produce the hormone oxytocin which regulates emotional and social behaviours. These cells play an important role in modulating anxiety, stress and depression. To investigate whether they could also influence the growth of colorectal tumours, Pan et al. used various approaches to manipulate the activity of Oxt neurons in mice with colitis-associated cancer. Disrupting the Oxt neurons in these animals increased anxiety-like behaviours and promoted tumour growth. Stimulating these cells, on the other hand, suppressed cancer progression. Further experiments also showed that treating the mice with celastrol, a plant extract which can act on the hypothalamus, stimulated Oxt neurons and reduced tumour growth. In particular, the compound worked by acting on a nerve structure in the abdomen which relays messages to the gut. These preliminary findings suggest that the hypothalamus and its Oxt-producing neurons may influence the progression of colorectal cancer in mice by regulating the activity of an abdominal 'hub' of the nervous system. Modulating the activity of Oxt-producing neurons could therefore be a potential avenue for treatment.


Asunto(s)
Neoplasias Colorrectales/patología , Hipotálamo/fisiología , Oxitocina/fisiología , Triterpenos Pentacíclicos/farmacología , Animales , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/complicaciones , Neoplasias Colorrectales/inducido químicamente , Sulfato de Dextran/toxicidad , Hipotálamo/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/metabolismo
11.
J Neuroendocrinol ; 33(11): e13004, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34218479

RESUMEN

Classically, hypothalamic neuroendocrine cells that synthesise oxytocin and vasopressin were categorised in two major cell types: the magnocellular and parvocellular neurones. It was assumed that magnocellular neurones project exclusively to the pituitary gland where they release oxytocin and vasopressin into the systemic circulation. The parvocellular neurones, on the other hand, project within the brain to regulate discrete brain circuitries and behaviours. Within the last few years, it has become evident that the classical view of these projections is outdated. It is now clear that oxytocin and vasopressin in the brain are released extrasynaptically from dendrites and from varicosities in distant axons. The peptides act principally to modulate information transfer through conventional synapses (such as glutamate synapses) by actions at respective receptors that may be preferentially localised to synaptic regions (on either side of the synapse) to alter the 'gain' of conventional synapses.


Asunto(s)
Oxitocina , Vasopresinas , Encéfalo/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Oxitocina/fisiología , Vasopresinas/metabolismo
12.
Pharmacol Ther ; 223: 107820, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33600854

RESUMEN

Drug addiction is one of the leading causes of mortality worldwide. Despite great advances were achieved in understanding the neurobiology of drug addiction, the therapeutic options are severely limited, with poor effectiveness and serious side effects. The neuropeptide oxytocin (OXT) is well known for its effects on uterine contraction, sexual/maternal behaviors, social affiliation, stress and learning/memory by interacting with the OXT receptor and other neuromodulators. Emerging evidence suggests that the acute or chronic exposure to drugs can affect the OXT system. Additionally, OXT administration can ameliorate a wide range of abused drug-induced neurobehavioral changes. Overall, OXT not only suppresses drug reward in the binge stage of drug addiction, but also reduces stress responses and social impairments during the withdrawal stage and, finally, prevents drug/cue/stress-induced reinstatement. More importantly, clinical studies have also shown that OXT can exert beneficial effects on reducing substance use disorders of a series of drugs, such as heroin, cocaine, alcohol, cannabis and nicotine. Thus, the present review focuses on the role of OXT in treating drug addiction, including the preclinical and clinical therapeutic potential of OXT and its analogs on the neurobiological perspectives of drugs, to provide a better insight of the efficacy of OXT as a clinical addiction therapeutic agent.


Asunto(s)
Oxitocina , Transducción de Señal , Trastornos Relacionados con Sustancias , Humanos , Oxitocina/efectos de los fármacos , Oxitocina/fisiología , Transducción de Señal/fisiología , Trastornos Relacionados con Sustancias/tratamiento farmacológico
13.
Proc Natl Acad Sci U S A ; 117(42): 26406-26413, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020267

RESUMEN

Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.


Asunto(s)
Ansiedad/metabolismo , Oxitocina/metabolismo , Estrés Psicológico/fisiopatología , Animales , Ansiedad/etiología , Reacción de Prevención/efectos de los fármacos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Oxitocina/fisiología , Peromyscus/metabolismo , Receptores de Oxitocina/metabolismo , Núcleos Septales/fisiología , Conducta Social , Estrés Psicológico/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-32719656

RESUMEN

Excessive intake of fat is a major risk factor for lifestyle-related diseases such as heart disease and also affects brain function such as object recognition memory, social recognition, anxiety behavior, and depression-like behavior. Although oxytocin (OXT) has been reported to improve object recognition, social recognition, anxiety behavior, and depression-like behavior in specific conditions, previous studies did not explore the impact of OXT in high-fat diet (HFD)-fed mice. Furthermore, it remains unclear whether intake of HFD affects OXT/oxytocin receptor (OXTR) in the brain. Here, we demonstrated that peripheral OXT administration improves not only social recognition but also object recognition and depressive-like behavior in HFD-fed mice. In contrast, peripheral OXT administration to HFD-fed male mice increased fear and anxiety-related behavior. In addition, we observed that intake of HFD decreased OXTR and c-fos mRNA expression in the hippocampus, specifically. Furthermore, peripheral OXT administration increased OXT mRNA expression in the hypothalamus. Altogether, these findings suggest that OXT has the potential to improve various recognition memory processes via peripheral administration but also has side effects that increase fear-related behavior in males.


Asunto(s)
Conducta Animal/fisiología , Memoria/fisiología , Obesidad/fisiopatología , Obesidad/psicología , Oxitocina/fisiología , Animales , Ansiedad/fisiopatología , Depresión/fisiopatología , Dieta Alta en Grasa , Miedo/fisiología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oxitocina/administración & dosificación , Receptores de Oxitocina/fisiología , Conducta Social
15.
PLoS One ; 15(3): e0229692, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32191722

RESUMEN

It has been demonstrated that secretion of several hormones can be classically conditioned, however, the underlying brain responses of such conditioning have never been investigated before. In this study we aimed to investigate how oxytocin administration and classically conditioned oxytocin influence brain responses. In total, 88 females were allocated to one of three groups: oxytocin administration, conditioned oxytocin, or placebo, and underwent an experiment consisting of three acquisition and three evocation days. Participants in the conditioned group received 24 IU of oxytocin together with a conditioned stimulus (CS) during three acquisition days and placebo with the CS on three evocation days. The oxytocin administration group received 24 IU of oxytocin and the placebo group received placebo during all days. On the last evocation day, fMRI scanning was performed for all participants during three tasks previously shown to be affected by oxytocin: presentation of emotional faces, crying baby sounds and heat pain. Region of interest analysis revealed that there was significantly lower activation in the right amygdala and in two clusters in the left superior temporal gyrus in the oxytocin administration group compared to the placebo group in response to observing fearful faces. The activation in the conditioned oxytocin group was in between the other two groups for these clusters but did not significantly differ from either group. No group differences were found in the other tasks. Preliminary evidence was found for brain activation of a conditioned oxytocin response; however, despite this trend in the expected direction, the conditioned group did not significantly differ from other groups. Future research should, therefore, investigate the optimal timing of conditioned endocrine responses and study whether the findings generalize to other hormones as well.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Oxitocina/administración & dosificación , Oxitocina/fisiología , Estimulación Acústica , Llanto , Expresión Facial , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Rociadores Nasales , Percepción del Dolor/efectos de los fármacos , Percepción del Dolor/fisiología , Estimulación Luminosa , Saliva/metabolismo , Método Simple Ciego , Adulto Joven
16.
Curr Neuropharmacol ; 18(1): 14-33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31544693

RESUMEN

Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Hipotálamo/metabolismo , Oxitocina/fisiología , Vasopresinas/fisiología , Animales , Humanos
17.
Neuron ; 103(1): 133-146.e8, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31104950

RESUMEN

Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.


Asunto(s)
Miedo/fisiología , Hipotálamo/fisiología , Memoria/fisiología , Oxitocina/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Ambiente , Extinción Psicológica/fisiología , Miedo/psicología , Femenino , Reacción Cataléptica de Congelación , Silenciador del Gen , Ácido Glutámico/metabolismo , Hipotálamo/citología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética , Oxitocina/genética , Ratas , Ratas Wistar
18.
Transl Psychiatry ; 9(1): 140, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000694

RESUMEN

The inability to discriminate between threat and safety is a hallmark of stress-induced psychiatric disorders, including post-traumatic stress disorder. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) is critically involved in the modulation of fear and anxiety, and has been proposed to regulate discrimination between signaled (cued, predictable) and unsignaled (unpredictable) threats. We recently showed that oxytocin receptors (OTRs) in the BNSTdl facilitate acquisition of cued fear measured in a fear-potentiated startle (FPS). In the current study, using in vivo microdialysis in awake male Sprague-Dawley rats, a double immunofluorescence approach with confocal microscopy, as well as retrograde tracing of hypothalamic BNST-projecting OT neurons, we investigated whether fear conditioning activates OT system and modulates OT release. To determine the role of OTR in fear memory formation, we also infused OTR antagonist or OT into the BNSTdl before fear conditioning and measured rats' ability to discriminate between cued (signaled) and non-cued (unsignaled) fear using FPS. In contrast to acute stress (exposure to forced swim stress or foot shocks alone), cued fear conditioning increases OT content in BNSTdl microdialysates. In addition, fear conditioning induces moderate activation of OT neurons in the paraventricular nucleus of the hypothalamus and robust activation in the supraoptic and accessory nuclei of the hypothalamus. Application of OT into the BNSTdl facilitates fear learning toward signaled, predictable threats, whereas blocking OTR attenuates this effect. We conclude that OTR neurotransmission in the BNSTdl plays a pivotal role in strengthening fear learning of temporally predictable, signaled threats.


Asunto(s)
Condicionamiento Clásico , Miedo/fisiología , Receptores de Oxitocina/metabolismo , Reflejo de Sobresalto , Núcleos Septales/metabolismo , Estimulación Acústica , Animales , Señales (Psicología) , Masculino , Oxitocina/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/antagonistas & inhibidores
19.
Ann N Y Acad Sci ; 1457(1): 5-25, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30875095

RESUMEN

Social connections are vital to survival throughout the animal kingdom and are dynamic across the life span. There are debilitating consequences of social isolation and loneliness, and social support is increasingly a primary consideration in health care, disease prevention, and recovery. Considering social connection as an "innate need," it is hypothesized that evolutionarily conserved neural systems underlie the maintenance of social connections: alerting the individual to their absence and coordinating effector mechanisms to restore social contact. This is reminiscent of a homeostatic system designed to maintain social connection. Here, we explore the identity of neural systems regulating "social homeostasis." We review findings from rodent studies evaluating the rapid response to social deficit (in the form of acute social isolation) and propose that parallel, overlapping circuits are engaged to adapt to the vulnerabilities of isolation and restore social connection. By considering the neural systems regulating other homeostatic needs, such as energy and fluid balance, we discuss the potential attributes of social homeostatic circuitry. We reason that uncovering the identity of these circuits/mechanisms will facilitate our understanding of how loneliness perpetuates long-term disease states, which we speculate may result from sustained recruitment of social homeostatic circuits.


Asunto(s)
Conducta Animal , Soledad , Conducta Social , Aislamiento Social , Apoyo Social , Adaptación Psicológica , Animales , Arvicolinae , Glucocorticoides/fisiología , Homeostasis , Humanos , Sistema Hipotálamo-Hipofisario , Hipotálamo/fisiología , Ratones , Modelos Neurológicos , Motivación , Oxitocina/fisiología , Sistema Hipófiso-Suprarrenal , Ratas , Receptores Opioides/fisiología
20.
JBI Database System Rev Implement Rep ; 17(2): 209-247, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30730854

RESUMEN

OBJECTIVE: The primary objective of this scoping review was to examine and map the range of neurophysiological impacts of human touch and eye gaze, and consider their potential relevance to the therapeutic relationship and to healing. INTRODUCTION: Clinicians, and many patients and their relatives, have no doubt as to the efficacy of a positive therapeutic relationship; however, much evidence is based on self-reporting by the patient or observation by the researcher. There has been little formal exploration into what is happening in the body to elicit efficacious reactions in patients. There is, however, a growing body of work on the neurophysiological impact of human interaction. Physical touch and face-to-face interaction are two central elements of this interaction that produce neurophysiological effects on the body. INCLUSION CRITERIA: This scoping review considered studies that included cognitively intact human subjects in any setting. This review investigated the neurophysiology of human interaction including touch and eye gaze. It considered studies that have examined, in a variety of settings, the neurophysiological impacts of touch and eye gaze. Quantitative studies were included as the aim was to examine objective measures of neurophysiological changes as a result of human touch and gaze. METHODS: An extensive search of multiple databases was undertaken to identify published research in the English language with no date restriction. Data extraction was undertaken using an extraction tool developed specifically for the scoping review objectives. RESULTS: The results of the review are presented in narrative form supported by tables and concept maps. Sixty-four studies were included and the majority were related to touch with various types of massage predominating. Only seven studies investigated gaze with three of these utilizing both touch and gaze. Interventions were delivered by a variety of providers including nurses, significant others and masseuses. The main neurophysiological measures were cortisol, oxytocin and noradrenaline. CONCLUSIONS: The aim of this review was to map the neurophysiological impact of human touch and gaze. Although our interest was in studies that might have implications for the therapeutic relationship, we accepted studies that explored phenomena outside of the context of a nurse-patient relationship. This allowed exploration of the boundary of what might be relevant in any therapeutic relationship. Indeed, only a small number of studies included in the review involved clinicians (all nurses) and patients. There was sufficient consistency in trends evident across many studies in regard to the beneficial impact of touch and eye gaze to warrant further investigation in the clinical setting. There is a balance between tightly controlled studies conducted in an artificial (laboratory) setting and/or using artificial stimuli and those of a more pragmatic nature that are contextually closer to the reality of providing nursing care. The latter should be encouraged.


Asunto(s)
Fijación Ocular , Masaje/tendencias , Relaciones Enfermero-Paciente/ética , Tacto , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Niño , Estudios de Evaluación como Asunto , Femenino , Humanos , Hidrocortisona/fisiología , Masculino , Persona de Mediana Edad , Neurofisiología , Norepinefrina/fisiología , Oxitocina/fisiología , Autoinforme , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA